学生 | 教职工 
中文   EN
贾建华


贾建华简历

1)基本情况

姓名:贾建华

性别:男

出生年月:1979.9

学历/学位:博士研究生/博士学位

职称:教授

导师类型:博士生导师/硕士生导师

政治面貌:中共党员

职务:信息工程学院院长(2022年9月-现在)

研究方向:机器学习、数据挖掘、模式识别和生物信息学(入选2021年度爱思维尔中国高被引学者榜单(统计学领域)),2021年研究成果获江西省自然科学二等奖(排名第二)。

2)主持的科研项目:

2.1 国家级项目

1、国家自然科学基金项目:《非平衡分类模式下的蛋白质翻译后修饰位点预测方法研究》(项目批准号:61761023)结题

2、国家自然科学基金项目:《集成学习框架下的蛋白质-蛋白质结合位点预测方法研究》(项目批准号:61261027)结题

2.2 省级项目

1、江西省自然科学基金项目:《基于代价敏感和集成学习的蛋白质翻译后修饰位点预测方法研究》(项目批准号:20202BABL202004)在研

2、江西省自然科学基金项目:《基于序列信息的蛋白质功能位点预测方法研究》(项目批准号:20161BAB202047)结题

3、江西省自然科学基金项目:《机器学习中的选择性谱聚类集成学习算法及其在蛋白质分类和结构中的预测研究》(项目批准号:20122BAB211033)结题

2.3 市厅级项目

1、江西省教育厅科研项目:《非平衡分类方法及其在蛋白质翻译后修饰位点预测中的应用研究》(项目批准号:GJJ190695)结题

2、江西省教育厅科研项目:《集成学习框架下的蛋白质翻译后修饰位点预测方法研究》 (项目批准号:GJJ160908)结题

3、江西省教育厅科研项目:《基于集成学习的非平衡数据分类模式下的蛋白质结合位点预测方法研究》(项目批准号:GJJ14640)结题

4、江西省教育厅科研项目:《聚类集成中的选择性策略及其应用研究》(项目批准号:GJJ12513)结题

3)大学开始受教育经历

  • 1996.9-2000.7,南昌大学,机电工程学院,本科/学士

  • 2004.8-2007.2,西安电子科技大学,智能感知和图像理解教育部重点实验室,研究生/硕士 导师:焦李成教授

  • 2007.3-2010.12,西安电子科技大学,智能感知和图像理解教育部重点实验室,研究生/博士 导师:焦李成教授

    4)研究工作经历

  • 2000.7-2004.7,空军试验训练基地,一区第三试验站,助理工程师

  • 2004.8-2007.2,西安电子科技大学,智能感知和图像理解教育部重点实验室,硕士研究生

  • 2007.3-2010.12,西安电子科技大学,智能感知和图像理解教育部重点实验室,博士研究生

  • 2010.1-景德镇陶瓷学院,信息工程学院,教师

  • 2014.4 –2015.4英国伯明翰大学, 计算机学院,访问学者

  • 2018.10 -2018.11加拿大女王大学 加拿大癌症试验生物统计组 访问学者

  • 2019.8 -2019.9黑山共和国下戈里察大学数学系生物信息学研究组访问学者

    5)科研成果

  • 贾建华著《谱聚类集成算法研究》天津大学出版社,2011年8月,独著。

  • Jianhua Jia,Peinuo Lv, Xin Wei,et.al.SNO-DCA: A Model for Predicting S-Nitrosylation Sites Based on Densely Connected Convolutional Networks And Attention Mechanism.Heliyon.2024,10(1):e23187.

  • Jianhua Jia,Yu Deng, Mengyue Yi,et.al.4mCPred-GSIMP: Predicting DNA N4-methylcytosine Sites in Mouse Genome with Multi-Scale Adaptive Features Extraction and Fusion.Mathematical Biosciences and Engineering.2023,Accept.

  • Jianhua Jia,Xiaojing Cao, Rufeng Lei.DLC-ac4C: A Prediction Model for N4-acetylcytidine Sites in Human mRNA Based on DenseNet and Bidirectional LSTM Methods. Current Genomics.2023,24(3):171-186.

  • Jianhua Jia, Genqiang Wu, Meifang Li.iGly-IDN: Identifying Lysine Glycation Sites in Proteins Based on Improved DenseNet. Journal of Computational Biology. 2023, Accepted

  • Jianhua Jia, Lulu Qin,Rufeng Lei.im5C-DSCGA: A hybrid framework based on improved DenseNet and attention mechanism for identifying 5-methylcytosine sites in human RNA.Frontiers in Bioscience-Landmark.2023, Accepted

  • Jianhua Jia, Zhangying Wei, Mingwei Sun.EMDL-m6Am: identifying n6,2-O-dimethyladenosine sites based on stacking ensemble deep learning.BMC Bioinformatics. 2023, 24:397.

  • Jianhua Jia, Zhangying Wei, Xiaojing Cao.EMDL-ac4C: identifying n4-acetylcytidine based on ensemble two-branch residual connection DenseNet and attention.Frontiers in Genetics. 2023, 14, doi: 10.3389/fgene.2023.1232038.

  • 贾建华,陈天,吴跟强等.m6AmTwins:基于深度学习和Twins网络的m6Am位点预测.中国生物化学与分子生物学报.2023,39(6):889-895.

  • Jianhua Jia, Lulu Qin,Rufeng Lei.DGA-5mC: a 5-Methylcytosine site prediction model based on theimproved DenseNet and bidirectional GRU method.Mathematical Biosciences and Engineering. 2023, 20(6): 9759–9780.

  • Jianhua Jia, Rufeng Lei, Lulu Qin,et.al.iEnhancer-DCSV: Predicting enhancers and their strength based on DenseNet and improved convolutional block attention module.Frontiers in Genetics. 2023, 14.DOI:10.3389/fgene.2023.1132018.

  • Jianhua Jia, Mingwei Sun, Genqiang Wu, et.al.DeepDN_iGlu: Prediction of lysine glutarylation sites based on attention residual learning method and DenseNet. Mathematical Biosciences and Engineering.2023.20(2):2815-2830.

  • Jianhua Jia,Genqiang Wu, Meifang Li,et.al.pSuc-EDBAM: Predicting lysine succinylation sites in proteins based on ensemble dense blocks and an attention module.BMC Bioinformatics.2022.10(23):450.

  • Jianhua Jia,Genqiang Wu, Wangren Qiu.pSuc-FFSEA: Predicting Lysine Succinylation Sites in Proteins Based on Feature Fusion and Stacking Ensemble Algorithm.Frontiers in Cell and Developmental Biology. 2022,10(5):894874.

  • Jianhua Jia,Yanxia Shen, Wangren Qiu. Identifying lysine succinylation sites in proteins by broad learning system and optimizing imbalanced training dataset via randomly labeling samples. Wuhan University of Natural Science. 2021,26(1):081-088.

  • 贾建华,魏欣.iSulf_wide-PseAAC:基于集成支持向量机的蛋白质S-亚磺酰化预测方法.中国生物化学与分子生物学报.2021,37(6):822-829.

  • Jianhua Jia,Xiaoyan Li,Wangren Qiu,et.al.iPPI-PseAAC(CGR):identify protein-protein interactions by incorporating chaos game representation into PseAAC.Journal of Theoretical Biology,2019,1(460):195-203.

  • JianhuaJia,Liuxia Zhang, Zi, Liu,et.al.pSumo-CD: Predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC. Bioinformatics, 2016,32(20):3133-3141.(SCI indexed, IF:5.766)

  • Jianhua Jia,Zi Liu, Xuan Xiao.et. al.iCar-PseCp: identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget, 2016,7(23):34558-34570.(SCI:000377752100079, IF:5.008).

  • Jianhua Jia,Zi Liu, Xuan Xiao.et. al.pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. Journal of Theoretical Biology.2016, 394(4):223-230.(SCI:000379888800020,IF:2.049).(入选ESI前1%高被引论文,入选ESIfast-breaking paper).

  • Jianhua Jia,Zi Liu, Xuan Xiao.et. al.iPPBS-Opt: Asequence-basedensembleclassifier foridentifyingprotein-proteinbindingsites byoptimizingimbalancedtrainingdatasets.Molecules.2016,21(1), 95.(SCI:000369486800019, IF:2.465).(入选ESItop papers).

  • Jianhua Jia,Zi Liu, Xuan Xiao.et.al.iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Analytical Biochemistry.2016,497(3):48-56.(SCI indexed:000370909900008, IF:2.243).

  • Jianhua Jia,Zi Liu, Xuan Xiao.et.al. iPPI-Esml:An ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical propertiers and wavelet transform into PseAAC.Journal of Theoretical Biology.2015, 21(337):47-56.(SCI:000355241600005. IF:2.049).(入选2015年中国百篇最具国际影响力的论文,ESI前1%高被引论文)

  • Jianhua Jia.Zi Liu, Xiang Chen.et.al.Prediction of Protein-Protein Interactions using Chaos Game Representation and wavelet transform via random forests. Genetics and Molecular Research.2015,14(4):11791-11805.(SCI indexed:000365922800013. IF: 0.764)

  • Jianhua Jia,Xuan Xiao,Bingxiang Liu. Prediction of Protein-Protein Interactions with Physicochemical Descriptors and Wavelet Transform via Random Forests.Journal of Laboratory Automation(JALA). 2016, 21(3): 368-377. (SCI: 000377095200003. IF:1.297)

  • Jianhua Jia,Zi Liu, Xuan Xiao.et.al. Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition. Journal of Biomolecular Structure & Dynamics. 2016,34(9):1946-1961.(SCI indexed. IF:2.300).

  • Jianhua Jia,Xuan Xiao, Bingxiang Liu,et.al. Bagging-based Spectral Clustering Ensemble Selection. Pattern Recognition Letters, 2011,32 (10):1456-1467.(SCI: 000292236500005,EI: 20112114009105. IF:1.586).

  • Jianhua Jia, Licheng Jiao, Xia Chang. Soft Spectral Clustering Ensemble Applied to Image Segmentation. Frontiers of Computer Science in China, Springer Press, 2011,5(1):66-78.(SCI:000292506200007,EI:20110913712647).

  • 贾建华,焦李成.空间一致性约束谱聚类算法用于图像分割.红外与毫米波学报, 2010, 29 (1): 69-74.(SCI: 000275511100015, EI:20101612868824)

  • 贾建华,焦李成,黄文涛.一种基于质心不变特性的仿射不变纹理特征提取算法.电子学报, 2008, 36 (10): 1910-1915.(EI: 20084911765012)

  • Jia Jianhua, Jiao Licheng, Chang Xia. Image segmentation via meanshift and loopy belief propagation. Wuhan University Journal of Natural Sciences, Springer Press, 2010, 15 (1): 043-050.

  • 贾建华,焦李成.图像分割的谱聚类集成算法.西安交通大学学报. 2010, 44(6): 93-98.(EI: 20102713062996).

  • Xu Yuanchun,Jia Jianhua. Adaptive spectral clustering ensemble selection via resampling and population-based incremental learning algorithm.Wuhan University Journal of Natural Sciences, Springer Press, 2011, 16(3):228-236.

  • Jianhua Jia, Xuan Xiao, Binxiang Liu. Similarity-based spectral clustering ensemble selection. Proceedings of the 9thInternational Conference on Fuzzy Systems and Knowledge Discovery(FSKD 2012).2012:1071-1074.

累计访问: